#Pacific Ocean AI | Artificial Intelligence for Pacific Ocean
#BlueRobotics | Natural feature navigation | SLAM navigation | Driving AGV manually around the site | Recording data from vehicle safety laser scanners | Cleaning map by removing any dynamic objects | Programming required routes for AGV | Autonomous Navigation Technology (ANT) | Automated Guided Vehicles (AGV)
#SEA.AI | Detecting floating objects early | Using thermal and optical cameras to catch also objects escaping conventional systems such as Radar or AIS: Unsignalled crafts or other floating obstacles, e.g., containers, tree trunks, buoys, inflatables, kayaks, persons over board | System computes input from lowlight and thermal cameras, using Machine Vision technology, deep learning capabilities and proprietary database of millions of annotated marine objects | High-resolution lowlight and thermal cameras | Real-time learning of water surface patterns | Searching for anomalies | Distinguishing water from non-water | Comparing anomalies with neural network | Recognize objects by matching combination of filters | Augmented reality video stream combined with map view | Intelligent alarming based on threat level | Detecting persons in water | On-board cameras with integrated image processing | Providing digital understanding of vessel surroundings on water | SEA.AI App on smartphone or tablet
#SailDrone | Ocean Data Solutions with Autonomous Surface Vehicles
#Avikus | Developing autonomous navigation solutions for vessels | HiNAS for large merchant ships | Displaying detected ships and navigation information in AR images | Sensor fusion technology | NeuBoat for boats | NAS, Navigation Assistant System | BAS, Berthing Assistant System | DAS, Docking Assistant System
#Open Ocean Robotics | Solar powered autonomous boats | Real time information to protect oceans | Sensors, cameras and communication devices capturing information | Solar powered boats can travel nonstop for months, without producing any greenhouse gas emissions, noise pollution or risk of oil spills | ASVs (Autonomous Surface Vehicle) can monitor for oil spills, detect intentional dumping
#WINDWARD AI |Decision Support Platform to Accelerate Global Trade | AI-DrivenVessel Profile | AI-powered solution for accurate, real-time visibility, including vessel tracking and container tracking
#Seaber | Micro-AUVs | Down to 300m depth |8-10 hours autonomy | Weighing 10kg | Measuring 1m long. | Commercial oceanographic applications | Surveillance
#awake.ai | AI-driven Optimisation Platform for Port Operations
#Orca AI | FleetView for fleet operators and management | SeaPod | Artificial intelligence-based maritime navigation assistant, watchkeeper | Automated object detection and prioritization | All marine object detection | Curbing marine mammal strikes | Reducing whale mortality rates | Closed $72.5M Series B round | Total funding raised to $111M
#Ocean Infinity | Data AUVs collect at Morro Bay help Equinor develop and refine its floating offshore wind farm design and inform site assessment, construction and operations plans
#Seakit International | MaxLimer | Uncrewed surface vessel
#SeaRobotics | Unmanned Marine Systems & Engineering | Autonomous Surface Vehicles | Sensor suites
#Nvidia | GPU computing | AI Development Platforms and SDKs
#UC San Diego | Shield AI | University of San Diego: Master of Science in Applied Artificial Intelligence program
#Pacific Islands Forum | 18 members: Australia, Cook Islands, Federated States of Micronesia, Fiji, French Polynesia, Kiribati, Nauru, New Caledonia, New Zealand, Niue, Palau, Papua New Guinea, Republic of Marshall Islands, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu
#Ocean Cleanup | Ridding oceans of plastic
#Maersk | Support vessels Tender and Trader for Ocean Cleanup | Logistics support in Rotterdam
#figure.ai | Commercially-viable autonomous humanoid robot
#Kia | Global Partnership deal with Ocean Cleanup | Contributions for ocean operations and construction of Interceptor Original river cleaning devices
#Vercel | Generative AI ecosystem
#Stanford Robotics Lab | Research pertaining to all aspects of robotic manipulation and control
#beomni.ai | AI brain that can power humanoid robots
#Macquarie Group Foundation | Supporting Ocean Cleanup
#Societe General | Funding to Ocean Cleanup
#Blue Atlas Robotics | Sentinus Go! App | Underwater inspection robot
#Syracuse University | Model calculatung the amount of free hydrogen gas produced and stored beneath the seafloor | Tectonic spreading rate | Thickness of serpentinized rocks | Serpentinized rocks: greenish-brown-patterned surface resemblung snakeskin -- have been chemically altered by water as lifted up by the spreading tectonic plates in Earth crust | Molecules of free hydrogen gas produced as by-product of serpentinization process | Stacey L. Worman, Lincoln F. Pratson, Jeffrey A. Karson, Emily M. Klein. Global rate and distribution of H2gas produced by serpentinization within oceanic lithosphere
#Apple | iPhone
#Anyscale | Generative AI ecosystem | Cobot: Collaborative Robots | Universal Robotics (UR) | Techman | AUBO
#LookOut | AI vision system | Synthesized data from charts, AIS, computer vision, and cloud fusing it into one 3D augmented reality view | Connects to existing boat display | Mountable camera system to the top of any boat | Lookout App for laptop, phone or tablet | Infrared vision | Night vision sensor | Spotting small vessels, floating debris, buoys, people in water | Blind spot detection | Backup camera | Temperature breaks, bird cluster locations, underwater structures for anglers | Camera streaming over WiFi to phones and tablets on the boat | Over-the-air (OTA) updates | Marine-grade water-proof enclosure | Integrated with satellite compass | National Marine Electronics Association (NMEA) communication standard interface | Multifunction Display (MFD) | Multi-core CPU driving augmented reality compute stack | ClearCloud service | NVIDIA RTX GPU for real-time computer vision | DockWa app
#SiLC | Machine Vision solutions with FMCW LiDAR vision | FMCW at the 1550nm wavelength | Eyeonic Vision Sensor platform | Detecting vehicles and various obstacles from long distances | Honda Xcelerator Ventures | Honda Marine
#Oklo | Developing next-generation fission powerhouses | Producing abundant, affordable, clean energy at global scale
#Gatik AI | Developing autonomous vehicle technology for logistics | Luminous: creating supercomputer for AI on single chip | Qventus: AI-based software platform for hospital operations | Drive.ai: creating AI software for autonomous vehicles | Wayve: AI technology for autonomous driving | Pathr.ai: Spatial intelligence analytics for physical locations | Croq | LPU Inference Engine | Fast inference for computationally intensive applications with a sequential component | Better performance on LLMs compared to GPUs | Support PyTorch, TensorFlow, and ONNX for inference | GroqCloud is powered by scaled network of Language Processing Units | HW: crack, node, card
#SparkAI | Combining people and technology to resolve AI edge cases, false positives, exceptions encountered live in production | Launch & scale automation products faster | Inject augmented human cognition anywhere in production | Launch new products with imperfect AI | Bootstrap new models for evaluation | Stop training in the lab | Deploy product to customers sooner | Let SparkAI protect against edge cases | Derive deeper real world insights on where your model is struggling | All while product is live, generating revenue | Autonomous tractor | John Deere | REST API | Python SDK
#Intergovernmental Negotiating Committee (INC-5) | Developing international legally binding instrument on plastic pollution | Raising awareness about the serious impacts of plastic pollution on both humans and nature | Global bans and phase-outs of the most harmful and problematic plastic products and chemicals | Global product design requirements to ensure all plastic produced is safe to reuse and recycle as part of global non-toxic circular economy
#Confluent | Generative AI ecosystem | Pinecone
#Allen Institute for Artifical Intelligence | AI for the Environment | Robot planning precise action points to perform tasks accurately and reliably | Vision Language Model (VLM) controlling robot behavior | Introducing automatic synthetic data generation pipeline | Instruction-tuning VLM to robotic domains and needs | Predicting image keypoint affordances given language instructions | RGB image rendered from procedurally generated 3D scene | Computing spatial relations from camera perspective | Generating affordances by sampling points within object masks and object-surface intersections | Instruction-point pairs fine-tune language model | RoboPoint predicts 2D action points from image and instruction, which are projected into 3D using depth map | Robot navigates to these 3D targets with motion planner | Combining object and space reference data with VQA and object detection data | Leveraging spatial reasoning, object detection, and affordance prediction from diverse sources | Enabling to generalize combinatorially.| Synthetic dataset used to teach RoboPoint relational object reference and free space reference | Red and ground boxes as visual prompts to indicate reference objects | Cyan dots as visualized ground truth | NVIDIA | | Universidad Catolica San Pablo | University of Washington
#UC Berkley | Professor Trevor Darrell | Advancing machine intelligence | Methods for training vision models | Enabling robots to determine appropriate actions in novel situations | Approaches to make VLMs smaller and more efficient while retaining accuracy | How LLMs can be used as visual reasoning coordinators, overseeing the use of multiple task-specific models | Utilizing visual intelligence at home while preserving privacy | Focused on advancements in object detection, semantic segmentation and feature extraction techniques | Researched advanced unsupervised learning techniques and adaptive models | Researched cross-modal methods that integrate various data types | Advised SafelyYou, Nexar, SuperAnnotate. Pinterest, Tyzx, IQ Engines, Koozoo, BotSquare/Flutter, MetaMind, Trendage, Center Stage, KiwiBot, WaveOne, DeepScale, Grabango | Co-founder and President of Prompt AI
#VORAGO | Radiation hardened and radiation tolerant microcontrollers and microprocessors | High-volume manufacturing to harden commercially designed semiconductor component | Empowers mission success | Radiation-hardened ICs that excel in extreme environments | ARM | Texas Instruments | Brainchip | Custom hardware and firmware solutions tailored to withstand extreme environments | Ensuring that mission-critical components remain resilient | Custom solutions, armed with space-grade electronics and an ARM Cortex microcontrollers | International Space Station: dies measuring the effects of protons and cosmic rays | Satelites: devices utilized in Department of Defense Space Test Program (STP) missions | CubeSats: ARM microvontroller | Semiconductor components and solutions for extreme temperature environments up to +200°C
#Built Robotics | Autonomous solar piling robot | Robotic pile driver | RPD 35 surveys, distributes, drives, and records every pile for an all-in-one machine | Hammer working at 500 blows per minute | Sled carrying system | Pile plot plan is uploaded to the robot computer | Pile plan is automatically divided into sequences of piles | Each sequence is manually loaded into pile baskets | Pile baskets are forked onto sleds with telehandler | Autonomous piling task is initiated | Robot installs all the piles in its payload, then returns to its starting position to be reloaded
#Thinking Machines Lab | thinkingmachines.ai | Building artificial intelligence models and products | Competing on high end of large language models | Human-AI collaboration | Building AI that can adapt to full spectrum of human expertise | Multimodal systems that work with people collaboratively | AI models that can work across text, audio, video | AI models designed to excel in science and programming | Publishing technical blog posts, papers, program code | Mira Murati: CEO | John Schulman: Chief Scientist | Barret Zoph: CTO | Alexander Kirillov: Multimodal Research Head | John Lachman: Head of Special Projects | Alex Gartrell: Linux kernel, networking, and containerization | Andrew Tulloch: ML systems research and engineering | Brydon Eastman: Human and synthetic data, model alignment and RL | Christian Gibson: Supercomputers used in training frontier models | Devendra Chaplot: VLMs, RL, & Robotics | Ian O Connell: Infrastructure engineering | Jacob Menick: ML researcher | Joshua Gross: Products and research | Kurt Shuster: Reasoning | Kyle Luther: ML researcher | Lilian Weng: Research | Luke Metz: Research scientist and engineer | Mario Saltarelli: IT and Security leader | Myle Ott: AI researcher | Nikki Sommer: HRBP | Noah Shpak: ML Engineer, GPUs | Pia Santos: Executive Operations Leader | Randall Lin: Algorithms | Rowan Zellers: Realtime multimodal posttraining | Sam Schoenholz: Scaling, optimization | Sam Shleifer: Inference | Stephen Chen: Infrastructure engineer | Stephen Roller: Full-stack pre-training | Yinghai Lu: ML system engineer
#OpenSpace | openspace.ai | OpenSpace Spatial AI engine maps photos to plans automatically | As-built record of the building from preconstruction to handover and operation | Stay on top of progress | Verify work-in-place | Improve coordination | Reduce risk | AI automatically calculates progress of specific construction activities | Verify work completed for payment applications and better scheduling | Machine learning and computer vision to recognize, track, and quantify work-in-place | Heatmaps on floor plan | Progress Chart plots quantity installed over time | Live dashboards | Export OpenSpace Track progress data
#Jet Propulsion Laboratory, Pasadena, California | Sea level research | Physical oceanography | Satellite recordring | Unexpected amount of sea level rise detected | Communities in coastal areas are vulnerable to sea level rise effects | Unusual amount of ocean warming | Meltwater from land-glaciers | Ocean water is expanding as it warms
#Skyhawk | Wireless Vessel Monitoring System | 915 MHz RF tech | Verizon IoT, | Over-the-air updates | Wake-on-radio receiver technology | Decentralized architecture | Any Oversea hub can detect RF communications from any Oversea sensor | Communications relayed via cellular modem to Skyhawk servers.| Each sensor and hub designed to operate for years on single set of AA batteries | Oversea app and airtime subscription required
#Lockheed Martin | Integrated AI | Intelligence analysis | Real-time decision-making | Predictive aerospace maintenance | Optimized engineering designs | Customized large language models (LLMs) | Lockheed Martin AI Factory | Trustworthy and secure AI deployment | Both open-source and proprietary AI models | Google Cloud Vertex AI platform
#Cerebras | AI inference and training platform | Specialized AI chips | Wafer-scale engine (WSE) | 900,000 cores deliver high levels of parallelism required to train large-scale models faster and more efficiently | On-chip memory integration provides high-bandwidth access to data | Processing speeds exceeding 2,500 tokens per second | Real-time processing capabilities for autonomous systems, vehicles, devices
#NVidia | Dexterous robot development | Manipulating objects with precision, adaptability, and efficiency | Fine motor control, coordination, ability to handle a wide range of tasks, often in unstructured environments | Key aspects of robot dexterity include grip, manipulation, tactile sensitivity, agility, and coordination | Robot dexterity development for manufacturing, healthcare, logistics | Dexterity enabling automation in tasks that traditionally require human-like precision
#e-con Systems | Camera solutions for NVIDIA platforms | Full HD Global Shutter Camera for Jetson AGX Orin | Jetson AGX Orin: 64GB module, 275 TOPS with power configurable 15W and 60W | Multiple 4k ultra-lowlight camera for NVIDIA Jetson AGX Orin | Global shutter | Rolling shutter | Autofocus and fixed focus | High resolution and frame rate | High dynamic range | High sensitivity in both visible and NIR regions | Superior color reproduction | MIPI and GMSL2 interfaces | Camera SDK configured to support Isaac SDK | Multi-camera support | NVIDIA Isaac GEMs ROS: GPU-accelerated packages for ROS2 application | Isaac ROS GEMs help to assess camera position with regard to its starting point | Isaac ROS GEMs empower robotic applications to maneuver and navigate through complicated environments | Installing ROS 2 requires Ubuntu 20.04 | Board cameras | USB 3.0 cameras | Autonomous mobile robots, autonomous shopping
#Heesen | Acquire yachts that are already under construction | Platform concept | Proven engineering platform | Tested hulls | Semi custom series | Unique exterior design | Ability to personalise the yacht | Reducing both delivery time and costs | Producing in lines | Exclusivity is guaranteed | Production numbers of each platform are limited | Ability to build completely different yachts using an identical platform
#AutoMarineSys | Autonmous Marine Systems
#ABB Robotics | Robotics | Machine automation | Robotics campus | Collaborative and industrial robot arms | Autonomous mobile robots (AMRs) | Innovation hub for robotics startups | Offering startups support to run proof of concepts, lend products and technology expertise and venture capital
#BlinkLab (ASX: BB1) | Early diagnosis of autism spectrum disorder (ASD), attention deficit hyperactivity disorder and schizophrenia | Smartphone-neurobehavioral | High-speed video tracking of face | Mobile app as medical device to perform neurometric tests | Tests as biomarkers for neurological and psychiatric disorders | Smartphone camera and microphone as sensors | Results uploaded to cloud-based portal for storage and analysis using machine learning | Venture in digital healthcare
#Field AI | Autonomous systems for machines deployed to fields | Off-road autonomy
#kb2partner4autonomousbay_ai[72] =
#kb2partner4autonomousbay_ai[79] =
#Mountain View, CA, USA | BA Insight | AI assistance enablement technology | Language Processing Unit (LPU) | Language and linear computation | Machine learning | Large language model (LLM) | GroqCloud API | AI Inference | Programming languages: Go, Rust, C++, Python | Software stack: TCP, Linux kernel scheduler | Hardware: ASIC design | Electric engineering: high-speed chip to chip, SERDES, memory interfaces and operations | Lab equipment: real-time scope, sampling scope, spectrum analyzer, BERT | SI/PI tools: Cadence/Ansys , Synopsys | High speed processors: Graphics, Microprocessors, Network Processors, Mobile / Multimedia SOC | EDA tools: Cadence Genus/Innovus/Tempus, Synopsys Fusion Compiler/ICC2/Primetime, Ansys Redhawk, Joules/PTPX
#BrainChip | Edge AI | Real-time learning and inference at the edge | Akida technology
#Cadense | Millennium Platform: AI-driven digital twin supercomputer | Cerebrus Intelligent Chip Explorer: AI-enabled design optimization | Optimality Intelligent System Explorer: AI-driven Multiphysics analysis | Verisium Verification Platform: AI-driven verification platform | Allegro X AI: AI-driven PCB Design | Tensilica AI Platform: On-device AI IP
#SiLC | Developing a fully integrated FMCW LiDAR solution | FMCW LiDAR on Chip | Making machine perception more like human perception | Proprietary silicon photonic integration platform | 4D imaging solutions | Utilizing frequency modulated continuous wave (FMCW) at 1550nm wavelength
#Dusty Robotics | FieldPrinter automates transfering of digital model directly to construction site floor
#plus.ai | Generative AI-based autonomous driving software | Making it possible for vehicles to understand, predict, and maneuver safely on road, learning and adapting | Autonomous Truck | Deep neural network (DNN) models | Auto-labeling,| Model distillation
#Croq | AI inference technology | Language Processing Unit (LPU) | CLI utility bringing natural language power understanding to your command line | Shell-AI leverages LangChain for LLM use and builds on InquirerPy for interactive CLI
#OLogic | Robotics | Pumpkin Pi i350 EVK | Edge AI platform | Designed for mainstream AI + IoT applications | Vision and voice edge processing | Facial, object, gesture, motion recognition | LPR, voice activation and speed recognition | Sound isolation, bio-tech and biometric measurements
#UCLA | AI model analyzing medical images of diseases | Deep-learning framework | SLice Integration by Vision Transformer (SLIViT) | Analyzing retinal scan, ultrasound video, CT, MRI | Identifying potential disease-risk biomarkers | Using novel pre-training and fine-tuning method | Relying on large, accessible public data sets | NVIDIA T4 GPUs, NVIDIA V100 Tensor Core GPUs, NVIDIA CUDA used to conduct research | SLIViT makes large-scale, accurate analysis realistic | Disease biomarkers help understand disease trajectory of patients | Tailoring treatment to patients based on biomarkers found through SLIVIT | Model largely pre-trained on datasets of 2D scans | Fine-tuning model on 3D scans | Transfer learned model to identify different disease biomarkers by fine-tuning on datasets consisting of imagery from very different modalities and organs | Trained on 2D retinal scans and then fine-tuned model on MRI of liver | Helping model with downstream learnings even though different imagery domains
#Anthropic | AI safety and research | AI powered software engineering | AI to turn market trends into marketing campaign | AI powered connection to codebases for help on software troubleshooting errors and identifying code optimizations | AI powered computer use | AI prompt caching | Syncing GitHub repositories with AI model | Researching how large language models work internally | Searching relations among data, compute, parameters, and performance of large-scale networks | Studying and engaging with safety issues of large models | Amazon Bedrock | Google Cloud Vertex | GitLab
#Astera Labs | Intelligent Connectivity Platform | High-speed connectivity integrated circuits (ICs), modules, boards | Connectivity System Management and Optimization Software | Providing hyperscaler customers ability to deploy and operate high-performance AI and cloud infrastructure | Software-defined IC architecture | Distributed microcontrollers and sensors | Real-time link and device monitoring | Smart Fabric Switches | PCIe 6 fabric switch | Delivering maximum predictable performance to increase GPU utilization | Protocol and performance optimization for increased data transfer efficiency | Real-time telemetry data | Built-in protocol analyzer with link state history and timestamps | Full non-destructive eye scan for RX Lane margining | Self-test features to minimize link downtime and accelerate fault isolation | AI scale-up (GPU-to-GPU) | AI clusters | Generative AI applications | Nvidia supplier
#uWare Robotics | Autonomous underwater vehicles (AUVs)
#SubC Imaging | Integrated cameras, software, and remote solutions for deep-sea research
#Kongsberg Defence & Aerospace (KDA) | Surveillance of vessels in the Arctic Regions of Norway (NAVAREA XIX) | Investing to space industry
#Tampere University | Pneumatic touchpad | Soft touchpad sensing force, area and location of contact without electricity | Device utilises pneumatic channels | Can be used in environments such as MRI machines | Soft robots | Rehabilitation aids | Touchpad does not need electricity | It uses pneumatic channels embedded in the device for detection | Made entirely of soft silicone | 32 channels that adapt to touch | Precise enough to recognise handwritten letters | Recognizes multiple simultaneous touches | Ideal for use in devices such as MRI machines | If cancer tumours are found during MRI scan, pneumatic robot can take biopsy while patient is being scanned | Pneumatic device can be used in strong radiation or conditions where even small spark of electricity would cause serious hazard
#Norwegian Institute of Marine Research | Arctic Sea research
#UK Marine Biological Association | Marine heat waves research
#Argo | Collecting information from inside the ocean using a fleet of robotic instruments that drift with the ocean currents and move up and down between the surface and a mid water level | Floats (instruments) spend almost all their life below the surface | Observing ocean data related to climate change
#Simrad | Marine Chartplotters | Autopilots | Radar | Beam sharpening technology | ZoneTrack | Halo Dangerous Target Alerts | Bird+ Mode
#OndoSense | Radar distance sensor | Sensor software: integrated into control system or used for independent quality monitoring | Object detection | Distance measurement | Position control | Agriculture: reliable height control of the field sprayer | Mining industry | Transport & Logistics | Shipping & Offshore | Mechanical and plant engineering | Metal and steel industry | Energy sector | Harsh industrial environments | Dust & smoke: no influence | Rain & snow: no influence | Radar frequency: 122GHz | Opening angle: ±3° | Measuring range: 0.3 – 40 m | Measuring rate: up to 100Hz | Output rate: up to 10 ms / 100 Hz | Measurement accuracy; up to ±1mm | Measurement precision: ±1mm | Communication protocol: RS485; Profinet, other interfaces via gateway | Switching output: 3x push-pull (PNP/NPN) | Analogue output: Current interface (4 – 20 mA) | Protection class: IP67
#Untether AI | Accelerating AI inference | PCI-Express form factor and power envelope | Over 2 PetaOps per card | Accelerator card | AI chip | Intel backef | Toronto, Canada
#Wartsila | Marine autonomy solutions